What Technology Wants

What Technology Wants by Kevin Kelly Page B

Book: What Technology Wants by Kevin Kelly Read Free Book Online
Authors: Kevin Kelly
chemical bombs, supernovas, and other kinds of explosions. They literally consume themselves with incredibly high but unsustainable densities of energy. The glory of a sunlike star is that it can sustain its brilliant fission for billions of years. But it does so at a lower energy flow rate than the sustainable flux that takes place in a green plant! Rather than a burst of fire, the energy exchange in grass yields the cool order of green blades, tawny stalks, and plump seeds ripe with information that can duplicate a picture-perfect clone. Greater yet is the steady energy flow within animals, where we can actually sense the energetic waves. They wiggle, pulse, move, and in some cases radiate warmth.
    The flow of energy through technology is still greater. Measured in joules (or ergs) per gram per second, nothing concentrates energy for long periods of time as much as high-tech gadgetry. At the far right apex of the power density graph above, compiled by physicist Eric Chaisson, shines the computer chip. It conducts more energy per second per gram through its tiny corridors than animals, volcanoes, or the sun. This bit of high technology is the most energetically active thing in the known universe.

    Power Density Gradient. Large, complex systems listed in order of their energy flow density, as measured by the amount of energy that flows through the system per gram per second of the system’s duration.
    We can now retell the story of the technium as a story of expanding cosmic activity. At the very start of creation, the universe, such as it was, was packed into a very, very small space. The entire cosmos began as a flash smaller than the smallest bit of the smallest particle in the smallest atom. It was equally hot and bright and dense within that dot. All parts of this too-tiny spot shared a uniform temperature. There was, in fact, no room for any differences, and no activity at all.
    But from the very start of its creation, this tiny spot expanded by a process we don’t understand. Every new point flew away from every other new point. As the universe ballooned to about the size of your head, coolness became possible. Before it expanded to that size, in its first three seconds, the universe was perfectly solid, with no emptiness for relief. It was so full, even light could not move. Indeed, it was so uniform that the four fundamental forces we see at work in reality today—gravity, electromagnetism, the strong and weak nuclear forces—were compressed into a single unified force. In that start-up phase there was one general energy, which differentiated into four distinct forces as the universe expanded.
    It would not be too much of an exaggeration to say that in the initial femtoseconds of creation there was only one thing in the universe, one superdense power that ruled all, and this solitary power expanded and cooled into thousands of variations of itself. The history of the cosmos thus proceeds from unity to diversity.
    As the universe stretched out, it made nothingness. As emptiness increased, so did coolness. Space permitted energy to cool into matter and for matter to slow down, light to radiate, and gravity and the other energetic forces to unfold.
    Energy is simply the potential—the difference needed—to cool. Energy can only flow from greater to lesser, so without a differential no energy can flow. Curiously, the universe expanded faster than matter itself could cool and gel, which means the potential for cooling kept increasing. The faster the universe expanded, the greater was its potential to cool and the greater were the potential differences within its boundaries. Over aeons of cosmic time this expanding differential (between expanding emptiness and the remnant hotness of the big bang) powered evolution, life, intelligence, and eventually the acceleration of technology.
    Energy, like water under gravity, will seep to the lowest, coolest level and not rest until all differential has been

Similar Books

Sky Child

T. M. Brenner

Playfair's Axiom

James Axler

The Hidden Fire (Book 2)

James R. Sanford

Picture This

Jacqueline Sheehan

A Disgraceful Miss

Elaine Golden

CHERUB: Guardian Angel

Robert Muchamore