absolute rest.” This prompts Einstein toraise “to the status of a postulate” the principle of relativity, which holds that the laws of mechanics and electrodynamics are the same in all reference systems moving at constant velocity relative to one another.
Einstein goes on to propound the other postulate upon which his theory was premised: the constancy of the speed of light “independent of the state of motion of the emitting body.” Then, with the casual stroke of a pen, and the marvelously insouciant word “superfluous,” the rebellious patent examiner dismissed two generations’ worth of accrued scientific dogma: “The introduction of a ‘light ether’ will prove to be superfluous, inasmuch as the view to be developed here will not require a ‘space at absolute rest.’ ”
Using these two postulates, Einstein explained the great conceptual step he had taken during his talk with Besso. “Two events which, viewed from a system of coordinates, are simultaneous, can no longer be looked upon as simultaneous events when envisaged from a system which is in motion relative to that system.” In other words, there is no such thing as absolute simultaneity.
In phrases so simple as to be seductive, Einstein pointed out that time itself can be defined only by referring to simultaneous events, such as the small hand of a watch pointing to 7 as a train arrives. The obvious yet still astonishing conclusion: with no such thing as absolute simultaneity, there is no such thing as “real” or absolute time. As he later put it, “There is no audible tick-tock everywhere in the world that can be considered as time.” 56
Moreover, this realization also meant overturning the other assumption that Newton made at the beginning of his
Principia.
Einstein showed that if time is relative, so too are space and distance: “If the man in the carriage covers the distance
w
in a unit of time—
measured from the train
—then this distance—
as measured from the embankment
—is not necessarily also equal to
w.
” 57
Einstein explained this by asking us to picture a rod that has a certain length when it is measured while it is stationary relative to the observer. Now imagine that the rod is moving. How long is the rod?
One way to determine this is by moving alongside the rod, at the same speed, and superimposing a measuring stick on it. But how long would the rod be if measured by someone
not
in motion with it? In thatcase, a way to measure the moving rod would be to determine, based on synchronized stationary clocks, the precise location of each end of the rod at a specific moment, and then use a stationary ruler to measure the distance between these two points. Einstein shows that these methods will produce
different
results.
Why? Because the two stationary clocks have been synchronized by a stationary observer. But what happens if an observer who is moving as fast as the rod tries to synchronize those clocks? She would synchronize them differently, because she would have a different perception of simultaneity. As Einstein put it, “Observers moving with the moving rod would thus find that the two clocks were not synchronous, while observers in the stationary system would declare the clocks to be synchronous.”
Another consequence of special relativity is that a person standing on the platform will observe that time goes more slowly on a train speeding past. Imagine that on the train there is a “clock” made up of a mirror on the floor and one on the ceiling and a beam of light that bounces up and down between them. From the perspective of a woman on the train, the light goes straight up and then straight down. But from the perspective of a man standing on the platform, it appears that the light is starting at the bottom but moving on a diagonal to get to the ceiling mirror, which has zipped ahead a tiny bit, then bouncing down on a diagonal back to the mirror on the floor, which has in turn zipped ahead a tiny bit.
Kristina Jones, Celeste Jones, Juliana Buhring